blamoscience:

From The Earth Story Facebook:

While it certainly looks as though someone has taken a great deal of paint to these hills, these colours in fact formed naturally.
This unique geological formation is known as the Zhangye Danxia landform, found in southern China. It was formed by sediments laid down in a low-elevation fault basin during the Cretaceous period, which then experienced uplift due to their position on top of various fault zones. The various colours are a result of the erosion of the thick-bedded red sandstone and conglomerate: from running water erosion, biological effect, chemical precipitation and organic staining.

Pygites brachiopods… or bizarre fossil scrotal phylogeny?

Images 1 and 2: Source. In German. 

Image 3: Source

Caption: “Pygites is unusual for a Terebratulid brachiopod. It shares many of the same features that other brachiopods in it’s order except that it has a hole in the middle of it. The hole is created as the shell grows and splits into lobes that then eventually meet back together and enclose a hollow area. This is odd behavior for a brachiopodand I’ve only seen a handful of genera that have even exaggerated lobes, such as Dicoelosia from the Haragan formation, let alone those that surround a hole. Below are three specimens from the Cretaceous (Hauterivian stage) of Spain that show you the variation in the genera.”

Image 4: ”Pygites diphyoides (d’Orbigny, 1849) from the Hauterivian (Lower Cretaceous) of Cehegin, Murcia, Spain. This terebratulid is characterized by a central perforation through its valves.” Source: Wikipedia; cc-by-sa

Image 5: Pygites diphyoides (source)

More brachiopods! The spiral lophophores are a filtering apparatus. 

Image 1: “Fig. 8. Hypothetical representation of efficiency of the filtering system of some extinct spire-bearing brachiopods showing flow patterns and extension of area for trapping food resources. Inhalant and exhalant currents according toVogel (1975) and diagram modified from Ager and Riggs (1964).”

Image 2: “Fig. 9. Hypothetical representation of efficiency of the filtering system present in extinct productid brachiopods showing flow patterns and extension of area for trapping food resources. Inhalant and exhalant currents as in a similar model proposed for Falafer Grant (1972) and diagram modified from Brunton et al. (2000) without including his interpretations.”

Source: 

Pérez-Huerta and Sheldon. 2006. “Pennsylvanian sea level cycles, nutrient availability and brachiopod paleoecology.” Palaeogeography, Palaeoclimatology, Palaeoecology. Volume 230, Issues 3–4, 30 January 2006, Pages 264–279. http://dx.doi.org/10.1016/j.palaeo.2005.07.020

http://www.sciencedirect.com/science/article/pii/S0031018205004451

More brachiopods! The spiral lophophores are a filtering apparatus. 

Image 1: Liospiriferina rostrata (jr synonym Spiriferina rostrata) (Brachiopod). Brachiopods filtered plankton, using a specialized organ: the lophophore. It is exceptional to be able to find silicified skeleton of this organ, visible in this specimen.” via Wikipedia (image source) cc-by-sa

Image 2: Spiriferina brachiopod fossil. Science Photo Library