Bryozoan Statoblast (diminutive aquatic animal of the phylum Bryozoa) (10x)

“Survival pod” of a bryozoan colony: http://en.wikipedia.org/wiki/Bryozoa#Reproduction_and_life_cycles

“Phylactolaemates also reproduce asexually by a method that enables a colony’s lineage to survive the variable and uncertain conditions of freshwater environments.[16] Throughout summer and autumn they produce disc-shaped statoblasts, masses of cells that function as “survival pods” rather like the gemmules of sponges.[6] Statoblasts form on the funiculus connected to the parent’s gut, which nourishes them.[16] As they grow, statoblasts develop protective bivalve-like shells made of chitin. When they mature, some statoblasts stick to the parent colony, some fall to the bottom (“sessoblasts”), some contain air spaces that enable them to float (“floatoblasts”),[6] and some remain in the parent’s cystid to re-build the colony if it dies.[16] Statoblasts can remain dormant for considerable periods, and while dormant can survive harsh conditions such as freezing and desiccation. They can be transported across long distances by animals, floating vegetation, currents[6] and winds,[16] and even in the guts of larger animals.[64] When conditions improve, the valves of the shell separate and the cells inside develop into a zooid that tries to form a new colony. Plumatella emarginata produces both “sessoblasts”, which enable the lineage to control a good territory even if hard times decimate the parent colonies, and “floatoblasts”, which spread to new sites. New colonies of Plumatella repens produce mainly “sessoblasts” while mature ones switch to “floatoblasts”.[61] A study estimated that one group of colonies in a patch measuring 1 square metre (11 sq ft) produced 800,000 statoblasts.[6]

Terrifying (but tiny!) bryozoans

Images 1 and 2: Beania mirabilis (source) cc-by-nc-sa

Image 3: Electra monostachys (source) cc-by-nc-sa

Image 1: “Scanning electron microscope image of a bryozoan colony” (Source)

Image 2: “This skeleton of a living bryozoan, collected at Bahia de los Angeles, Baja California, clearly shows this typical colonial organiation.

Each individual, or zooid, is enclosed in a sheath of tissue, the zooecium, that in many species secretes a rigid skeleton of calcium carbonate. Each zooid in this electron micrograph is less than a millimeter long and has a single opening, the orifice. Through this opening, the lophophore, a ring of ciliated tentacles centered on the mouth, protrudes to capture small food particles. The lophophore can be retracted very rapidly by specialized retractor muscles, and the opening closed by a doorlike operculum, visible on some of the zooids in the picture at the left.”


Image 3: Membraniporella nitida (source) cc-by-nc-sa

More info: http://en.wikipedia.org/wiki/Bryozoa

Waltzing Volvox, from the Goldstein Lab at the University of Cambridge

Volvox is a colonial green algae (more info at Wikipedia)

Check out more movies on their YouTube channel and lab website

(And someone else has uploaded a more colorful video of dancing volvox here: http://www.youtube.com/watch?v=9pjW1cMfTz8)

Volvox, a colonial green algae (more info at Wikipedia)

From the Goldstein Lab, Department of Applied Mathematics and Theoretical Physics, University of Cambridge:

They do really, really cool research, as described by this awesome statement: 

When asked whether I am a theorist or an experimentalist, my reply is that I am a scientist. Our group seeks to understand fundamental principles that govern the behavior of nonequilibrium systems in physics and biology, using a combination of experiment and theory. This research is not easily described by a single, conventional academic label; rather, it involves the domains of condensed matter physics, physical chemistry, biological physics, fluid dynamics, applied mathematics, and geophysics.  I subscribe to Poincaré’s motivation: 

The scientist does not study nature because it is useful;

he studies it because he delights in it, and he delights in it because
it is beautiful. If nature were not beautiful, it would not be worth knowing, and if nature were not worth knowing, life would not be worth living.

I also believe that some of the best science is close to art, and that Glenn Gould captured this spirit when he said 

The purpose of art is not the release of a momentary ejection of adrenaline but rather the gradual,
 lifelong construction of a state of wonder and serenity.”


UMMM and they have a YouTube channel!


Volvox globator, a colonial green algae (more info at Wikipedia)

The vast majority of these illustration plates are from a plant systematics wall chart series – the Dodel-Port Atlas – released between 1878 & 1883”

via: http://bibliodyssey.blogspot.com/2012/12/plant-anatomy-charts.html

Volvox, a colonial green algae

From Wikipedia

“Volvox is the most developed in a series of genera that form spherical colonies.[1] Each mature Volvox colony is composed of numerous flagellate cells similar to Chlamydomonas, up to 50,000 in total,[2] and embedded in the surface of a hollow sphere or coenobium containing an extracellular matrix[2] made of a gelatinous glycoprotein.[3] The cells swim in a coordinated fashion, with distinct anterior and posterior poles. The cells have eyespots, more developed near the anterior, which enable the colony to swim towards light. The individual algae in some species are interconnected by thin strands of cytoplasm, called protoplasmates.[4] They are known to demonstrate some individuality and working for the good of their colony, acting like one multicellular organism.”

Image 1Volvox aureus, by Dennis Kunkel (2002): http://www.denniskunkel.com/index.php?module=search&pId=100&keyword=volvox&phrase=1

Image 2: From Wikipedia, by Frank Fox (www.mikro-foto.de); cc-by-sa

Image 3: From Wikipedia, cc-by-sa

Image 4: Life cycle of Volvox carteri: http://www.metamicrobe.com/volvox/